ESMValTool v2

Reference Abstract
Eyring, V., Bock, L., Lauer, A., Righi, M., Schlund, M., Andela, B., Arnone, E., Bellprat, O., Brötz, B., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Crezee, B., Davin, E., Davini, P., Debeire, K., de Mora, L., Deser, C., Docquier, D., Earnshaw, P., Ehbrecht, C., Gier, B. K., Gonzalez-Reviriego, N., Goodman, P., Hagemann, S., Hardiman, S., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Koldunov, N., Lejeune, Q., Lembo, V., Lovato, T., Lucarini, V., Massonnet, F., Müller, B., Pandde, A., Pérez-Zanón, N., Phillips, A., Predoi, V., Russell, J., Sellar, A., Serva, F., Stacke, T., Swaminathan, R., Torralba, V., Vegas-Regidor, J., von Hardenberg, J., Weigel, K., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 - an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev., 13, 3383-3438, doi: 10.5194/gmd-13-3383-2020, 2020. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well documented Python package providing the core functionalities (ESMValCore) that performs common pre-processing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top-down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.
Lauer, A., Eyring, V., Bellprat, O., Bock, L., Gier, B. K., Hunter, A., Lorenz, R., Pérez-Zanón, N., Righi, M., Schlund, M., Senftleben, D., Weigel, K., and Zechlau, S.: Earth System Model Evaluation Tool (ESMValTool) v2.0 - diagnostics for emergent constraints and future projections from Earth system models in CMIP, Geosci. Model. Dev., 13, 4205-4228, doi: 10.5194/gmd-13-4205-2020, 2020. The Earth System Model Evaluation Tool (ESMValTool), a community diagnostics and performance metrics tool for evaluation and analysis of Earth system models (ESMs) is designed to facilitate a more comprehensive and rapid comparison of single or multiple models participating in the Coupled Model Intercomparison Project (CMIP). The ESM results can be compared against observations or reanalysis data as well as against other models including predecessor versions of the same model. The updated and extended version 2.0 of the ESMValTool includes several new analysis scripts such as large-scale diagnostics for evaluation of ESMs as well as diagnostics for extreme events, regional model and impact evaluation. In this paper, the newly implemented climate metrics such as effective climate sensitivity (ECS) and transient climate response (TCR) as well as emergent constraints for various climate-relevant feedbacks and diagnostics for future projections from ESMs are described and illustrated with examples using results from the well-established model ensemble CMIP5. The emergent constraints implemented include constraints on ECS, snow-albedo effect, climate-carbon cycle feedback, hydrologic cycle intensification, future Indian summer monsoon precipitation, and year of disappearance of summer Arctic sea ice. The diagnostics included in ESMValTool v2.0 to analyze future climate projections from ESMs further include analysis scripts to reproduce selected figures of chapter 12 of the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment report (AR5) and various multi-model statistics.
Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K.: Earth System Model Evaluation Tool (ESMValTool) v2.0 - technical overview, Geosci. Model Dev., 13, 1179-1199, doi: 10.5194/gmd-13-1179-2020, 2020. This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features a brand new design, with an improved interface and a revised preprocessor. It also features a significantly enhanced diagnostic part that is described in three companion papers. The new version of ESMValTool has been specifically developed to target the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows applying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than its predecessor by about a factor of 3. The performance can be further improved, up to a factor of more than 30, when the newly introduced task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures. ESMValTool v2.0 also includes a revised and simplified installation procedure, the setting of user-configurable options based on modern language formats, and high code quality standards following the best practices for software development.
Schlund, M., Hassler, B., Lauer, A., Andela, B., Jöckel, P., Kazeroni, R., Loosveldt Tomas, S., Medeiros, B., Predoi, V., Sénési, S., Servonnat, J., Stacke, T., Vegas-Regidor, J., Zimmermann, K., and Eyring, V.: Evaluation of Native Earth System Model Output with ESMValTool v2.6.0, Geosci. Model Dev., 16, 315-333, doi: 10.5194/gmd-16-315-2023, 2023. Earth system models (ESMs) are state-of-the-art climate models that allow numerical simulations of the past, present-day, and future climate. To extend our understanding of the Earth system and improve climate change projections, the complexity of ESMs heavily increased over the last decades. As a consequence, the amount and volume of data provided by ESMs has increased considerably. Innovative tools for a comprehensive model evaluation and analysis are required to assess the performance of these increasingly complex ESMs against observations or reanalyses. One of these tools is the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of ESMs. Input data for ESMValTool needs to be formatted according to the CMOR (Climate Model Output Rewriter) standard, a process that is usually referred to as "CMORization". While this is a quasi-standard for large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP), this complicates the application of ESMValTool to non-CMOR-compliant climate model output. In this paper, we describe an extension of ESMValTool introduced in v2.6.0 that allows seamless reading and processing of "native" climate model output, i.e., operational output produced by running the climate model through the standard workflow of the corresponding modeling institute. This is achieved by an extension of ESMValTool's preprocessing pipeline that performs a CMOR-like reformatting of the native model output during runtime. Thus, the rich collection of diagnostics provided by ESMValTool is now fully available for these models. For models that use unstructured grids, a further preprocessing step required to apply many common diagnostics is regridding to a regular latitude–longitude grid. Extensions to ESMValTool's regridding functions described here allow for more flexible interpolation schemes that can be used on unstructured grids. Currently, ESMValTool supports nearest-neighbor, bilinear, and first-order conservative regridding from unstructured grids to regular grids. Example applications of this new native model support are the evaluation of new model setups against predecessor versions, assessing of the performance of different simulations against observations, CMORization of native model data for contributions to model intercomparison projects, and monitoring of running climate model simulations. For the latter, new general-purpose diagnostics have been added to ESMValTool that are able to plot a wide range of variable types. Currently, five climate models are supported: CESM2 (experimental; at the moment, only surface variables are available), EC-Earth3, EMAC, ICON, and IPSL-CM6. As the framework for the CMOR-like reformatting of native model output described here is implemented in a general way, support for other climate models can be easily added.
Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, W. C., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and Eyring, V.: Earth System Model Evaluation Tool (ESMValTool) v2.0 - diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP, Geosci. Model Dev., 14, 3159-3184, doi: 10.5194/gmd-14-3159-2021, 2021. This paper complements a series of now four publications that document the release of the Earth System Model Evaluation Tool (ESMValTool) v2.0. It describes new diagnostics on the hydrological cycle, extreme events, impact assessment, regional evaluations, and ensemble member selection. The diagnostics are developed by a large community of scientists aiming to facilitate the evaluation and comparison of Earth system models (ESMs) which are participating in the Coupled Model Intercomparison Project (CMIP). The second release of this tool aims to support the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). Furthermore, datasets from other models and observations can be analysed. The diagnostics for the hydrological cycle include several precipitation and drought indices, as well as hydroclimatic intensity and indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). The latter are also used for identification of extreme events, for impact assessment, and to project and characterize the risks and impacts of climate change for natural and socio-economic systems. Further impact assessment diagnostics are included to compute daily temperature ranges and capacity factors for wind and solar energy generation. Regional scales can be analysed with new diagnostics implemented for selected regions and stochastic downscaling. ESMValTool v2.0 also includes diagnostics to analyse large multi-model ensembles including grouping and selecting ensemble members by user-specified criteria. Here, we present examples for their capabilities based on the well-established CMIP Phase 5 (CMIP5) dataset.

ESMValTool v1

Reference Abstract
Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-9-1747-2016, 2016. A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology-climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.
Lauer, A., V. Eyring, M. Righi, M. Buchwitz, P. Defourny, M. Evaldsson, P. Friedlingstein, R. de Jeuf, G. de Leeuw, A. Loew, C. J. Merchant, B. Müller, T. Popp, M. Reuter, S. Sandven, D. Senftleben, M. Stengel, M. Van Roozendael, S. Wenzel, and U. Willén: Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool, Remote Sensing of Environment, 203, 9-39, doi: 10.1016/j.rse.2017.01.007, 2017. The Coupled Model Intercomparison Project (CMIP) is now moving into its sixth phase and aims at a more routine evaluation of the models as soon as the model output is published to the Earth System Grid Federation (ESGF). To meet this goal the Earth System Model Evaluation Tool (ESMValTool), a community diagnostics and performance metrics tool for the systematic evaluation of Earth system models (ESMs) in CMIP, has been developed and a first version (1.0) released as open source software in 2015. Here, an enhanced version of the ESMValTool is presented that exploits a subset of Essential Climate Variables (ECVs) from the European Space Agency's Climate Change Initiative (ESA CCI) Phase 2 and this version is used to demonstrate the value of the data for model evaluation. This subset includes consistent, long-term time series of ECVs obtained from harmonized, reprocessed products from different satellite instruments for sea surface temperature, sea ice, cloud, soil moisture, land cover, aerosol, ozone, and greenhouse gases. The ESA CCI data allow extending the calculation of performance metrics as summary statistics for some variables and add an important alternative data set in other cases where observations are already available. The provision of uncertainty estimates on a per grid basis for the ESA CCI data sets is used in a new extended version of the Taylor diagram and provides important additional information for a more objective evaluation of the models. In our analysis we place a specific focus on the comparability of model and satellite data both in time and space. The ESA CCI data are well suited for an evaluation of results from global climate models across ESM compartments as well as an analysis of long-term trends, variability and change in the context of a changing climate. The enhanced version of the ESMValTool is released as open source software and ready to support routine model evaluation in CMIP6 and at individual modeling centers.

Related References

Reference Abstract
Eyring, V., Gleckler, P. J., Heinze, C., Stouffer, R. J., Taylor, K. E., Balaji, V., Guilyardi, E., Joussaume, S., Kindermann, S., Lawrence, B. N., Meehl, G. A., Righi, M., and Williams, D. N.: Towards improved and more routine Earth system model evaluation in CMIP, Earth Syst. Dynam., 7, 813-830, doi:10.5194/esd-7-813-2016, 2016. The Coupled Model Intercomparison Project (CMIP) has successfully provided the climate community with a rich collection of simulation output from Earth system models (ESMs) that can be used to understand past climate changes and make projections and uncertainty estimates of the future. Confidence in ESMs can be gained because the models are based on physical principles and reproduce many important aspects of observed climate. Scientifically more research is required to identify the processes that are most responsible for systematic biases and the magnitude and uncertainty of future projections so that more relevant performance tests can be developed. At the same time, there are many aspects of ESM evaluation that are well-established and considered an essential part of systematic evaluation but are currently implemented ad hoc with little community coordination. Given the diversity and complexity of ESM model analysis, we argue that the CMIP community has reached a critical juncture at which many baseline aspects of model evaluation need to be performed much more efficiently to enable a systematic, open and rapid performance assessment of the large and diverse number of models that will participate in current and future phases of CMIP. Accomplishing this could also free up valuable resources as many scientists are frequently "re-inventing the wheel" by re-writing analysis routines for well-established analysis methods. A more systematic approach for the community would be to develop evaluation tools that are well suited for routine use and provide a wide range of diagnostics and performance metrics that comprehensively characterize model behaviour as soon as the output is published to the Earth System Grid Federation (ESGF). The CMIP infrastructure enforces data standards and conventions for model output accessible via ESGF, additionally publishing observations (obs4MIPs) and reanalyses (ana4MIPs) for Model Intercomparison Projects using the same data structure and organization. This largely facilitates routine evaluation of the models, but to be able to process the data automatically alongside the ESGF, the infrastructure needs to be extended with processing capabilities at the ESGF data nodes where the evaluation tools can be executed on a routine basis. Efforts are already underway to develop community-based evaluation tools, and we encourage experts to provide additional diagnostic codes that would enhance this capability for CMIP. At the same time, we encourage the community to contribute observations for model evaluation to the obs4MIPs archive. The intention is to produce through ESGF a widely accepted quasi-operational evaluation framework for climate models that would routinely execute a series of standardized evaluation tasks. Over time, as the capability matures, we expect to produce an increasingly systematic characterization of models, which, compared with early phases of CMIP, will more quickly and openly identify the strengths and weaknesses of the simulations. This will also expose whether long-standing model errors remain evident in newer models and will assist modelling groups in improving their models. This framework will be designed to readily incorporate updates, including new observations and additional diagnostics and metrics as they become available from the research community.